
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

One-Class Classifiers Based on
Entropic Spanning Graphs

Lorenzo Livi, Member, IEEE, and Cesare Alippi, Fellow, IEEE

Abstract— One-class classifiers offer valuable tools to assess the
presence of outliers in data. In this paper, we propose a design
methodology for one-class classifiers based on entropic spanning
graphs. Our approach also takes into account the possibility to
process nonnumeric data by means of an embedding procedure.
The spanning graph is learned on the embedded input data,
and the outcoming partition of vertices defines the classifier.
The final partition is derived by exploiting a criterion based on
mutual information minimization. Here, we compute the mutual
information by using a convenient formulation provided in terms
of the α-Jensen difference. Once training is completed, in order to
associate a confidence level with the classifier decision, a graph-
based fuzzy model is constructed. The fuzzification process is
based only on topological information of the vertices of the
entropic spanning graph. As such, the proposed one-class classi-
fier is suitable also for data characterized by complex geometric
structures. We provide experiments on well-known benchmarks
containing both feature vectors and labeled graphs. In addition,
we apply the method to the protein solubility recognition problem
by considering several representations for the input samples.
Experimental results demonstrate the effectiveness and versatility
of the proposed method with respect to other state-of-the-art
approaches.

Index Terms—α-divergence, α-Jensen difference, entropic
spanning graph, one-class classification, protein solubility.

I. INTRODUCTION

THE analysis of large volumes of data is hampered by
many technical problems, including the ones related to

the quality and interpretation of associated information.
One-class classifier design is an important research
endeavor [1], [2] that can be used to tackle the problems of
anomaly/novelty detection or, more generally, to recognize
outliers in incoming data [3]–[8]. Several different methods
have been proposed in the literature, including clustering-
based techniques, kernel methods, and statistical approaches
(see [9] for a recent survey). A widespread approach considers
data generating processes, whose “nominal conditions” are
known by field experts, while nonnominal conditions are
unknown; the fault recognition problem provides a pertinent
example in this direction [10]. In such cases, a one-class
classifier can be effectively trained to recognize the nominal

Manuscript received April 8, 2016; revised August 12, 2016; accepted
September 12, 2016.

The authors are with the Department of Electronics, Information, and
Bioengineering, Politecnico di Milano, 20133 Milan, Italy, and also with
the Faculty of Informatics, Università della Svizzera Italiana, 6904 Lugano,
Switzerland (e-mail: lorenzo.livi@polimi.it; cesare.alippi@polimi.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2016.2608983

Fig. 1. Schematics illustrating the proposed classifier. The first step
consists in mapping the input data to a dissimilarity space. A graph-based
representation of the embedded data is then computed by minimizing the
mutual information. Finally, in order to provide a confidence level associated
with the classifier decision, the embedded data are fuzzified by exploiting
only topological information derived from the graph-based representation.
(a) Embedding. (b) kNN graph construction in dissimilarity space. (c) Graph
partition and related fuzzification (colors online).

conditions only and reject, along with a confidence level,
instances lying outside the nominal class.

In this paper, we present a novel methodology for con-
structing one-class classifiers based on entropic spanning
graphs [11] that extends a preliminary version appeared
in [12]. The high-level steps behind the proposed classifier
are given in Fig. 1. The first step consists in embedding the
training set, representative of the nominal condition class, in a
Euclidean space. The embedding is implemented by means
of the dissimilarity space representation [13] that depends
on a parametric dissimilarity measure defined in the input
domain. An important consequence of this choice is that,

2162-237X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

in principle, we are able to process any input data type (e.g.,
graphs, sequences, and other forms of nonnumerical data).
Once the embedding vectors are generated, we construct a
geometric (Euclidean) graph, whose vertices represent the
embedded samples and the edges represent their Euclidean
distances in the embedding space. Here, we use a k-nearest
neighbor (kNN) graph, where k is considered to be a structural
parameter. The model of the classifier is defined as one of the
possible partitions of such vertices. In particular, we derive
the partition by following a criterion based on mutual infor-
mation minimization. The resulting connected components
(clusters of vertices) form the decision regions (model) of the
classifier.

As said earlier, the first step of the procedure consists
in learning a dissimilarity representation of the input data.
Dissimilarity (and kernel function) learning is a well-known
research field in pattern recognition [14]. In general, research
efforts in the field of dissimilarity learning focus on adapting
well-known methods in the case of nonmetric distances; as
an alternative, embeddings are developed [15], [16] bringing
back the problem to the Euclidean geometric setting.

Dissimilarity representations might yield high-dimensional
embedding vectors. Graph-based models of data are popular in
pattern recognition, as in fact a graph allows to deal with the
high dimensionality of the data by relying on topological infor-
mation only [17], [18]. Among the many approaches, those
based on kNN graphs are particularly interesting and more
related to our work. For instance, Tomašev et al. [19], [20]
exploit the concept of “hubness” of samples mapped to
a kNN graph for designing clustering and classification sys-
tems for high-dimensional data.

The methodology proposed here possesses several con-
nections with other methods based on the concepts bor-
rowed from information theory [21]. In fact, information-
theoretic-based techniques are widely used in feature selection
and image processing problems [22]–[29], as well as for
devising clustering algorithms in both vector [30]–[34] and
graph [35]–[38] domains. Finally, we comment that our con-
tribution has some affinity with the information bottleneck
method [39], [40]. In fact, such a method prescribes that the
mutual information between the input and the compressed
representation should be minimized, while at the same time
enforcing the maximization of the mutual information of the
compressed representation with the target/output signal. Here,
we exploit only the unsupervised part of this approach by com-
puting a compressed, cluster-, and graph-based representation
of the input.

The novelty of our contribution can be summarized as
follows.

1) A methodology for designing one-class classifiers,
where the model of the classifier is obtained by exploit-
ing a criterion based on mutual information minimiza-
tion. To this end, we use a convenient formulation
for the mutual information derived from the α-Jensen
difference [41]. Such a measure can be directly com-
puted by means of a kNN-based α-order Rényi entropy
estimator [42]. The final classifier, optimal according to
the proposed criterion, is the one associated with the

partition among all possible partitions characterized by
minimum statistical dependence between the clusters.

2) A fuzzy model built on top of the obtained graph
partition that provides a way to assign a confidence level,
expressed in terms of membership degree to the nominal
conditions class, to each test sample. The fuzzification
mechanism is based only on topological properties of
the vertices of the entropic spanning graph. Therefore,
in principle, the method is capable to model clusters
with arbitrary shapes.

We show the experimental results on both synthetic and
real-world data sets for one-class classification, containing
samples represented as feature vectors and labeled graphs.
In this paper, in addition to evaluating the method on well-
known benchmarks, we also face the challenging problem of
protein solubility recognition [3]. Classification of proteins
with respect to their solubility degree is a hard yet very
important scientific problem, with consequences related to
the folding of such macromolecules [43]. Here, we tackle
the problem by representing a data set of proteins in several
different ways: as sequences of symbols (amino acid identi-
fiers), as labeled graphs (hence taking into account the folded
structure), as sequences of numeric vectors encoding features
of such graphs, and as feature vectors extracted from the graph
structures (considering also postprocessed versions of such
features). The possibility to deal with a given classification
problem from several different angles (i.e., by using different
data representations) without the need to fine tune the method
is a valuable design asset of the proposed one-class classifier.

The method presented here differs from our previous con-
tribution [11] in a number of ways. First of all, here, we use
a kNN graph for representing the samples in the embedding
space, whereas in [11], we used a minimum spanning tree.
In addition, the objective function for learning the model is
based on mutual information, while in [11], we adopted a com-
bination of entropy and modularity (to be maximized). Finally,
the fuzzification of the graph-based model is implemented here
by using only topological information of the entropic spanning
graph vertices. In [11], instead, we used a more conventional
centroid-based representation for the decision regions.

The remainder of this paper is structured as follows.
In Section II, we provide the technical details related to
the graph-based α-order Rényi entropy estimator and related
α-Jensen difference. The reader might skip this section if
already familiar with the basics. Section III provides the
details on the proposed one-class classifier. In Section IV,
we discuss the experimental results. Notably, in Section IV-A,
we present the results on well-known benchmarking data sets
(UCI and IAM). In Section IV-B, we discuss the results
obtained on the problem of classifying proteins with respect
to their solubility degree. Finally, in Section V, we draw our
conclusions and offer future research directions.

II. RÉNYI ENTROPY GRAPH-BASED ESTIMATION

A. Graph-Based Estimation of Rényi Entropy

Let X be a continuous random variable with probability
density function (pdf) f (·). The Rényi entropy of order α is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIVI AND ALIPPI: ONE-CLASS CLASSIFIERS BASED ON ENTROPIC SPANNING GRAPHS 3

defined as

Hα(X) = 1

1 − α
log

(∫
f (x)αdx

)
, α ≥ 0, α �= 1. (1)

When α → 1, (1) corresponds to the Shannon entropy.
Let us consider a data set S ⊂ R

m composed of
n independent identically distributed m-dimensional realiza-
tions xi ∈ S, i = 1, 2, . . . , n, with m ≥ 2. Let G be a
Euclidean graph, whose vertices denote the samples of S.
An edge ei j connecting xi and x j is weighted using the Euclid-
ean distance, |ei j | = d2(xi , x j). The α-order Rényi entropy (1)
can be estimated according to a geometric interpretation of
an entropic spanning graph of G [44]. Examples of spanning
graphs used in the literature include the minimum spanning
tree, kNN graph, Steiner tree, and TSP graph [45]–[52].
As we will discuss more formally in Section III, entropic
spanning graphs are the key elements of our contribution,
which will also be used to define the model of the classifier.
Let Lγ (G) = ∑

ei j ∈G |ei j |γ be the length of the entropic

spanning graph defined as the sum of all weights, where
γ ∈ (0, m) is a user-defined parameter defining the order
of the Rényi entropy, α = (m − γ)/m. The γ parameter
allows to focus on specific weights. For instance, with γ � 1,
it is possible to get rid of small weights in the summation;
conversely, small values of γ magnify the contribution of small
weights. Although there is no optimal setting for all problems,
γ is typically set in order to obtain α = 0.5. The Rényi entropy
of order α ∈ (0, 1) defined in (1) can be estimated as

Ĥα(G) = m

γ

[
log

(
Lγ (G)

nα

)
− log(β(Lγ (G), m))

]
(2)

where β(Lγ (G), m) is a constant term (i.e., it does not
depend on the pdf) that is defined as β(Lγ (G), m) �
γ /2 log(m/2πe). The entropy estimator (2) is a suitable choice
for estimating information-theoretic quantities when process-
ing high-dimensional data [42].

B. Rényi α-Divergence, α-Mutual Information,
and α-Jensen Difference

Starting from the α-order Rényi entropy (1), it is possible
to define other information-theoretic quantities, such as diver-
gence and mutual information. Let f (·) and q(·) be two pdfs
supported on the same domain. The Rényi α-divergence is
defined as

Dα(f ‖ q) = 1

α − 1
log

∫
f (x)αq(x)1−αdx (3)

with α ∈ (0, 1). Equation (3) operates as a measure of
(nonmetric) dissimilarity between two distributions. In fact,
it is nonnegative and is zero if and only if f (·) = q(·).

The mutual information between two distributions can be
used to assess their statistical dependence. Said in other terms,
mutual information can be seen as a measure of similarity
between random variables, where the similarity is measured
in terms of their dependence. In fact, we remind that two
distributions are statistically independent if and only if their
mutual information is zero. Let us consider our data set S.
Calculating the α-divergence between the joint and product

of marginal distributions of S features allows to define the
so-called α-mutual information [41]. Such a measure computes
the degree of statistical dependence between the components
forming S (or, more generally, between d different random
variables defined on the same domain). This is obtained by
assessing f (·) and q(·) in (3) as the joint distribution and
product of the marginals of S, respectively. Hence, mutual
information and divergence provide powerful and complimen-
tary tools to define dissimilarity-based recognition systems
(in our case, one-class classifiers).

The α-Jensen difference, with α ∈ (0, 1), is a useful
measure of dissimilarity between two distributions that is
defined as

�Hα(β, f, q)

= Hα(β f + (1 − β)q) − [β Hα(f) + (1 − β)Hα(q)] (4)

where β ∈ [0, 1] allows for a linear convex combination of the
pdfs. Since the α-order Rényi entropy (1) is strictly concave
in f (·) for α ∈ (0, 1) [41], the well-known Jensen’s inequality
assures that (4) is nonnegative and degenerates to zero if and
only if f (·) = q(·). This fact suggests to consider the α-Jensen
difference (4) as a reliable alternative for the α-divergence (3)
and hence also as a measure of statistical dependence between
distributions. In particular, (4) is defined by considering
only (combinations of) α-order Rényi entropy. Therefore, the
α-Jensen difference can be estimated directly by using bypass
estimators for each entropy term appearing in (4), such as
the graph-based entropy estimator shown in (2). Moreover, by
Jensen inequality, it can be easily extended in order to handle
d different pdfs as follows:

�Ĥα(β, G, d) = Ĥα(G) −
[

d∑
i=1

βi Ĥα(Gi)

]
(5)

where βi = |Gi |/|G| and |Gi | indicates the number of
vertices in Gi , guaranteeing thus

∑d
i=1 βi = 1. In (5),

Gi , i = 1, . . . , d , are the d subgraphs of G representing the
d different pdfs under considerations.

Here, we use (5) as a measure of (statistical) dissimilarity
between the d subgraphs Gi extracted from G derived during
the synthesis phase (see Section III).

III. ONE-CLASS CLASSIFIER BASED ON MUTUAL

INFORMATION MINIMIZATION

This section describes our contribution. First, in
Section III-A, we provide a high-level description of
the main steps characterizing the proposed method.
In Sections III-B and III-C, we describe, respectively, the
synthesis of the model, the graph-based fuzzification, and how
to use the classifier in the operational test modality. Finally,
in Section III-D, we analyze the asymptotic computational
complexity.

A. High-Level Description of the Proposed Method

Fig. 2 provides a block scheme describing the main steps of
the proposed one-class classifier. The classifier is applicable
to any input domain X ; as such, it operates also in domains

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Block scheme describing training and testing phases of the proposed
one-class classifier.

of nongeometric data (e.g., nonnumeric data such as labeled
graphs). Such a goal is achieved by first embedding the input
data set S ⊂ X , |S| = n, into a m-dimensional Euclidean
space. The embedding step can be described by a map φ :
P(X) × P(X) × � → R

n×m , where P(X) is the power
set of X and � is a domain of numeric parameters of the
input dissimilarity measure. A set of prototypes, R ⊆ S,
|R| = m ≤ n, called representation set, is used to compute
the dissimilarity matrix, Dn×m , given as Dij = dI(xi , r j),
xi ∈ S and r j ∈ R, where dI : X × X → R

+ is a
nonnegative (bounded) dissimilarity measure. In order to give
more flexibility to the method, we assume that dI(·, ·) depends
on some (numerical) parameters, say p ∈ � which, in turn,
influence the resulting vector configuration in the embedding
space. Developing the dissimilarity space representation (DSR)
of S is a straightforward yet principled way to construct a
Euclidean embedding space. Each input sample xi ∈ S is
represented by the corresponding row-vector xi of matrix D.
Therefore, the embedding step for the entire S is formally
described as D = φ(S,R, p). This stresses that the embedding
is controlled/influenced by both R and p. An important
property of the DSR is that, if dI(·, ·) is metric, distances in
the dissimilarity space are preserved up to a scaling factor
equal to

√
m, that is, d2(xi , x j) ≤ dI(xi , x j)

√
m (Lipschitz

mapping). On the other hand, if dI(·, ·) is not metric (for
instance, it violates the triangular inequality), it is possible to
prove that such a property can be still satisfied by considering
a constant related to the maximum violation of the triangular
inequality [53].

Embedded data are then represented by means of a geomet-
ric graph, G = (V, E). In this paper, we rely on kNN graphs.
In kNN graphs, vertices V denote embedded samples in S,
while edges their relations in terms of distance; each edge
ei j ∈ E is assigned a weight wi j = d2(xi , x j). The dimen-
sionality of a DSR depends on the number of prototypes
used during the computation of the dissimilarity matrix (the
number of prototypes is the number of dimensions). Deter-
mination of such prototypes is an important yet complex
task; it is equivalent to a problem of feature selection. Sev-
eral methods have been proposed in the literature (see [13]
and references therein) to address this problem. However,
all such methods are nontrivial in terms of computations,
especially when contextualized within a more complex system.

Therefore, our choice was to avoid such computations and
consider simple initializations of the prototypes—see the fol-
lowing. Nonetheless, constructing G on the DSR also allows
us to overcome/mitigate the problem of prototype selection,
as in fact graphs are suitable for representing (possibly) high-
dimensional data. In the following, we denote by G(p) the
Euclidean graph constructed over the DSR of S computed
using p for dI(·, ·).

We define the model of the classifier in terms of decision
regions by using the structural information derived from the
kNN graph G(p). In particular, each connected component
of G(p) forms a decision region. We propose a synthesis
procedure for learning such decision regions based on the
optimization of the α-Jensen difference (5). In doing so, we
find a partition of the graph whose components denote high
divergence, i.e., high statistical dissimilarity.

In order to provide a confidence level associated with the
classifier decision, once training is complete, we fuzzify the
obtained graph-based representation G(p). In practice, a mem-
bership degree is assigned to each vertex of the kNN graph.
Such membership degrees are based only on the topological
information provided by G(p), hence allowing to model data
with complex geometric structures.

A test sample is classified during the operational modality
by first mapping it into the DSR. Then, the sample is fuzzified
by using the related topological information. The classifier
provides two types of decisions regarding the membership of
test samples to the nominal conditions class: a binary and a
membership degree.

B. Training by Minimizing the Mutual Information

We propose a learning approach for synthesizing the clas-
sifier model by exploiting the α-Jensen difference (5) using a
kNN graph. Let us define the objective function

η(p, k) = 1

1 + �Ĥα(β, G(p), d(k))
∈ [0, 1] (6)

which basically converts the α-Jensen difference (5) in a
similarity measure. Although, formally speaking, (6) cannot
be thought as a form of α-mutual information, we argue that
it could be used as a proxy for its computation. In fact,
(6) assumes one when the divergence is zero (i.e., when all dis-
tributions are equal) and tends to zero as the divergence grows
(see [41] for further examples). The optimization problem
describing the one-class classifier model synthesis is, hence,
formulated as

min
k,p

η(p, k) (7)

where k ≥ 1 is the parameter of the kNN spanning graph
that acts here a structural parameter, defining the upper bound
for the partition order d . In fact, the number d = d(k) ≥ 1 of
connected components (subgraphs) of the resulting kNN graph
depends on k, as made explicit in (6). Parameters p affect the
dissimilarity measure used to construct the DSR. For instance,
when the input domain X corresponds to R

n , then dI(·, ·)
could be defined as a Euclidean metric with p as a vector
of weights (or as a covariance matrix). Therefore, the choice

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIVI AND ALIPPI: ONE-CLASS CLASSIFIERS BASED ON ENTROPIC SPANNING GRAPHS 5

Algorithm 1 Training of the One-Class Classifier
Input: A dataset S of n samples
Output: P(G(p∗))
1: Determine the prototypes R ⊆ S
2: while Global optimization cycle do
3: Get an instance of the parameters, p
4: Construct the DSR of S using R and p
5: for k = √

n, ..., 1 do
6: Construct the kNN spanning graph using k
7: Derive the partition, P(G(p))k , by grouping vertices

according to the resulting connected components
8: Compute the α-divergence (5)
9: Evaluate objective (6)

10: if η(p, k) > η(p, k + 1) then
11: Exit for loop at line 5
12: end if
13: end for
14: if Global convergence then
15: Store best k∗ = k and p∗ = p
16: return P(G(p∗)) with d = d(k∗) components
17: end if
18: end while

of p influences also the topology of the kNN graph. With
(7) we propose to minimize the dependence (or equivalently,
maximize the independence) between the distribution of the
resulting connected components, i.e., the clusters of con-
nected vertices derived from the kNN graph. The optimization
problem (7) consists in searching for the model order d
through k and the parameters p of the dissimilarity measure
that maximize the estimated α-Jensen difference (5) calculated
on the resulting graph partition. Please notice that valid solu-
tions for (7) also include kNN graphs with only one connected
component (i.e., fully connected graphs).

Algorithm 1 delivers the pseudocode describing the pro-
posed model synthesis strategy. A partition P(G(p)) is formed
by means of the connected components of the kNN graph.
A global loop at line 2 searches for the parameters p (that can
be a vector) of the input dissimilarity measure affecting the
DSR of S and hence the resulting kNN graph. In this paper,
all input samples are used as prototypes for the DSR, i.e.,
R = S. The high dimensionality of the resulting DSR does not
pose a serious problem, since all operations are based on the
kNN graph. However, when the cardinality of S is large, we
subsample the data set with a randomized selection scheme.
At line 5, we perform an additional loop where we decrease
the structural parameter k, hence forming a nondecreasing
number d ≤ k of connected components (subgraphs) in the
related kNN graph. Within this loop, we use (5) to estimate the
α-Jensen difference in the dissimilarity space. The entropy of
the entire data set, Ĥα (G), is estimated using k + 1 for the
kNN graph. This is performed to allow for a different number
of edges in the resulting kNN graph with respect to the total
number of edges in the subgraphs derived by using k.

The algorithm proceeds iteratively by increasing the
structural complexity of the model, i.e., by decreasing k.
We use a heuristic at line 10 to terminate the search: when

(6) starts to increase, then the model complexity should not
be increased further. This choice is justified by considering
the nature of our problem (7) which, in fact, consists solely
in minimizing the statistical dependence. A global conver-
gence criterion (line 14) is used to stop the search on the
parameters p. Since our objective is to be able to process any
type of input data, here, we use a derivative-free approach
for searching for the best-performing p. However, different
search methods (e.g., gradient-based approaches) could be
used by considering specific problem instances, such as when
processing feature vectors. The global convergence criterion is
activated when a maximum number of iterations is performed
or the objective function falls below a threshold τ � 0.

C. Fuzzy Model Based on Vertex Centrality

We exploit the graph-based representation G(p∗), where
p∗ denotes the optimal dissimilarity measure parameters, for
constructing a fuzzy model. A fuzzy set is assigned to each
of the d subgraphs, by defining the fuzzification mechanism
based only on the topological importance (centrality) of ver-
tices. In particular, we use the vertex closeness centrality as a
measure of importance of the vertices.

Let Gi be the i th subgraph of G (note that we omit
parameters p∗ only for the sake of simplicity). The closeness
centrality of a vertex v is computed as

χi (v) =
∑
u �=v

2−dGi (v,u) (8)

where dGi (v, u) is the weighted topological distance between
vertices v and u in Gi . We remind that Gi is a geometric
graph constructed over a dissimilarity space. Therefore, each
edge has a weight that is given by the Euclidean distance
among the corresponding samples in the dissimilarity space.

Let χ∗
i = maxv χi (v) be the maximum closeness centrality

value for the i th subgraph. We define χ̂i (v) and χ̂i , respec-
tively, as the vertex-specific difference and the lth percentile
of all differences with respect to the maximum closeness
centrality value, that is

χ̂i (v) = χ∗
i − χi (v) (9)

χ̂i = percentilev (χ̂i (v), l). (10)

Note that l in (10) can be adjusted depending on the problem
at hand; for instance, l = 50 gives the median value. The
membership degree of v to the i th subgraph is defined as

μi (v) = exp

(
− χ̂i(v)2

2χ̂2
i

)
. (11)

It is important to note that, as a consequence of the definition
of (8)–(11), there might be more than one vertex in a sub-
graph with membership equal to 1 (i.e., with equal closeness
centrality).

When a new test sample x has to be evaluated, we assign
to it the maximum among the membership values computed
for each of the d subgraphs

μ(x) = max
i=1,2,...,d

μi (x). (12)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Equation (12) is used to define the membership of test
samples to the class of nominal data: 0 implies that a sample
does not belong to that class, 1 indicates that it completely
belongs to it, while everything in-between provides a mem-
bership degree to the class of nominal data.

The binary decision rule, instead, operates by checking if

χ̂ j (x) ≤ χ̂ j (13)

where j = arg maxi=1,2,...,d μi (x).
In order to implement (12), we need to: 1) embed x

in the dissimilarity space induced by using p∗ and 2) add
a vertex corresponding to x , say vx , iteratively to each
subgraph Gi , i = 1, 2, . . . , d , with k∗ new edges, where
p∗ and k∗ are derived during training. It is worth noting an
important fact here. When vx is added to Gi , the resulting
kNN graph might change globally: several nearest neighbor
relations might be affected. Therefore, once vx is added to Gi ,
we recompute the kNN graph and perform the operations
described by (8)–(13).

Fig. 3 shows the four sample data sets that are useful
to highlight key modeling features of the proposed method.
For each data set (left panels), we show the resulting graph-
based model (middle panels) learned during the synthesis; the
fuzzification is performed by using the same training data.
We also show the density (right panels) of the differences
with respect to the vertex with maximum closeness centrality
(considering all derived subgraphs). Such information is useful
to understand how the threshold (13) is derived. The first
data set in Fig. 3(a) shows a simple case with spherical and
separated clusters. The resulting graph model [Fig. 3(b)] is
composed by three decision regions. The size of each of vertex
reflects the membership degree assigned to the corresponding
sample by using the herein described graph-based fuzzification
mechanism; the edge lengths are monotonically related to the
corresponding Euclidean distances. It is easy to recognize
the correspondence with the geometry of the data set. In the
second example [Fig. 3(d)], we show a uniformly distributed
data set. The proposed method learns a graph-based model
[Fig. 3(e)] with only one decision region, as in fact the data
possess no structure. However, samples still present differences
in terms of centrality/membership degree. In order to stress
the capability of the proposed method to model data with
intricate geometry, we show in Fig. 3(g) a data set with
two clusters having very different geometric properties. The
resulting graph-based model shown in Fig. 3(h) correctly
finds two decision regions having good resemblance with the
geometry of the data set. Finally, in Fig. 3(j), we show the first
two principal components of a 100-D, normally distributed
data set with two well-defined clusters. The graph-model in
Fig. 3(k) shows that it is possible to perfectly reconstruct such
two clusters, even by considering the high dimensionality of
the data.

In all cases, corresponding densities shown on the right-
hand side panels [see Fig. 3(c), (f), (i), and (l)] denote the
nontrivial distributions of closeness centrality differences (9).
This highlights the need to consider suitable percentiles (10)
of such distributions in order to compute the binary decisions
of the classifier (13).

D. Analysis of Computational Complexity

We assume to perform the global optimization in
Algorithm 1 with a genetic algorithm. The computational
complexity of the training phase is O(IPF), where I is the
maximum number of iterations, P is the population size, and
F is the cost of the fitness function. In the following, we
include all relevant terms and factors in the analysis of the
computational complexity, even those that do not influence
the asymptotic behavior. The cost of F can be expressed as
the sum of the following terms:

O(F1) = O(nr D)

O(F2) = O(
√

nF3)

O(F3) = O
(

rn2︸︷︷︸
kNN

+ n︸︷︷︸
components

+ nk︸︷︷︸
α−Jensen

)
. (14)

O(F1) accounts for the construction of the DSR with
n samples and r prototypes, where D is the computational
complexity associated with the dissimilarity measure for the
input data, which, depending on the specific case, might
not be negligible. O(F2) accounts for the loop at line 5,
which repeats at most

√
n times the operations described

by F3. O(F3) describes the cost associated with kNN graph
construction, determination of the connected components, and
computation of α-Jensen difference (5). The asymptotic com-
putational complexity for training is, hence, upper bounded
by O(n5/2).

Let us now focus on the computational complexity of the
test phase (normal operating mode; Section III-C). At this
stage, the data are partitioned into d ≥ 1 components (the
decision regions). Each test sample is sequentially assigned
to each of those components. The related kNN subgraphs are
updated with corresponding calculation of closeness centrality
and determination of membership degree of the test sample.
The computational complexity is given by

O

⎛
⎜⎝mr D × d

⎡
⎢⎣ r(n/d)2︸ ︷︷ ︸

kNN update

+ (n/d)3︸ ︷︷ ︸
centrality

+ n/d︸︷︷︸
membership

⎤
⎥⎦

⎞
⎟⎠ . (15)

In (15), m is the number of test samples. The first cost,
mr D, is due to the embedding of the test data in the
dissimilarity space. There are three main costs involved in
the computational complexity for testing the model: update
of the kNN subgraph related to a decision region, calcula-
tion of closeness centrality for the vertices in the subgraph,
and computation of membership degree of the test sample
[see (8)–(13)]. The asymptotic computational complexity of
the test stage depends thus on the order of d . If d = 1 and
assuming m � n, then the worst case is O(n3), which is
given by the cost of well-known Floyd–Warshall algorithm
for computing all-pair shortest paths in a weighted undirected
graphs.

Asymptotic computational complexity for constructing a
kNN graph can be lowered by considering more advanced,
yet approximate solutions [17], [22]. Similarly, the vertex
centrality can be computed with approximated versions of
closeness centrality [54] or by using other measures of central-
ity (importance) of vertices taken from the complex network

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIVI AND ALIPPI: ONE-CLASS CLASSIFIERS BASED ON ENTROPIC SPANNING GRAPHS 7

Fig. 3. Functioning of the graph-based fuzzification on four simple data sets. The graphs are the result of the model training with Algorithm 1. Fuzzification
is performed on the training set. Size of vertices in the middle panel is proportional to the related membership degree in decision regions. Position of graph
vertices in the middle panel plots is not related to the position of the related samples in the input domain. On the right-hand side panels, we show the density
of the differences, for each identified subgraph, with respect to the vertex having maximum closeness centrality [see (9)]. (a) Sample data set. (b) Graph-based
model. (c) Density of differences for each subgraph. (d) Uniform data set. (e) Graph-based model. (f) Density of differences. (g) Crescent-full moon data
set. (h) Graph-based model. (i) Density of differences for each subgraph. (j) First two principal components of a 100-D data set. (k) Graph-based model.
(l) Density of differences for each subgraph (colors online).

literature. In addition, it is worth noting that, when processing
input samples represented as numeric vectors, there is no need
to perform the embedding step devised in our method. This
would result in a significant reduction of the computational
complexity costs (in terms of both time and space) discussed
here.

IV. EXPERIMENTAL RESULTS

Experimental evaluation is first performed (Section IV-A) on
UCI and IAM benchmarking data sets. The proposed one-class
classifier is denoted as EOCC-MI throughout the experiments.

In addition, in Section IV-B, we address the important problem
of protein solubility recognition. In this case, we take into
account and compare several data representation for proteins,
including sequences, graphs, and feature vectors.

EOCC-MI depends on two hyperparameters: the threshold
τ ≥ 0 for terminating the search in Algorithm 1 and l
expressing the lth percentile of the distribution of closeness
centrality differences (see Section III-C). These two hyperpa-
rameters allow to fine-tune the classifier with respect to the
problem at hand. However, we noted that, in general, setting
τ = 0.05 and l = 50 provides a good performance for all

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

UCI DATA SETS CONSIDERED IN THIS PAPER

TABLE II

AUC TEST SET RESULTS ON UCI DATA SETS

Fig. 4. Global ranking of AUC results in Table II. The proposed classifier, EOCC-MI, denotes competitive performances with respect to the state-of-the-art
classifiers taken into account. Missing value for CAMELEON on BC-P is replaced with the mean value over the data set. (a) Ranking with two-way ANOVA.
(b) Ranking with Friedman test.

considered problems. Therefore, in the following, we adopt
such settings.

A. UCI and IAM Data Sets

The UCI data sets taken into account are shown in Table I.
Data sets and results for comparison are taken from [55];
data sets are not preprocessed in any way. AUC results and
related standard deviation are shown in Table II. EOCC-MI
performs well on all UCI data set with two exceptions: AB
and L data sets. In fact, for these two data sets, EOCC-MI
results are significantly lower than the average outcome
(p < 0.0001). Global ranking is shown in Fig. 4. EOCC-MI
denotes global statistics that are not significantly different
from the other classifiers taken into account. Considering the
two-way ANOVA test [Fig. 4(a)], EOCC-MI is globally ranked
at the fourth position. When taking into account the Friedman
test, instead, it is ranked eighth [Fig. 4(b)].

TABLE III

IAM DATA SETS TAKEN INTO ACCOUNT

Table III shows some information related to the IAM data
sets [56]. The samples (from digital images to proteins) are
represented as labeled graphs, with attributes on both vertices
and edges. AUC values are reported in Table IV. Results
are compared with the previous experiments [11]. EOCC-MI
denotes the comparable results with the other two classifiers.
However, we note statistically significant differences in two
cases (G and P data sets), where EOCC-2 achieves better
results. It is worth underlying that, in EOCC-2 [11], the final

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIVI AND ALIPPI: ONE-CLASS CLASSIFIERS BASED ON ENTROPIC SPANNING GRAPHS 9

TABLE IV

AVERAGE AUC (WITH RELATED STANDARD DEVIATION) AND AVERAGE SERIAL CPU TIME (TRAINING/TEST EXPRESSED IN SECONDS)
FOR IAM DATA SETS IN TABLE III. RESULTS FOR EOCC-1 AND EOCC-2 ARE TAKEN FROM [11].

RESULTS IN BOLD DENOTE STATISTICALLY SIGNIFICANT DIFFERENCES

Fig. 5. Density and normalized solubility degree of the E. coli proteins. (a) Density of the 3173 E. coli proteins with respect to the normalized solubility
degree. (b) Normalized solubility degree of the 1811 proteins taken into account. The two classes are clearly recognizable.

model is derived by means of cross validation. As such,
it is expected to be more accurate in terms of recognition
capability. However, as shown in the second block of Table IV,
EOCC-2 is significantly slower (from tens to hundreds of times
slower) in terms of computing CPU time required for training
[software is written in C++ and implemented on an Intel(R)
Core(TM) i7-4710HQ CPU 2.50 GHz]. This fact suggests that
EOCC-MI offers a good compromise between computational
cost and recognition performance.

B. Protein Solubility Recognition

Protein folding refers to the chemicophysical process trans-
forming the primary structure of a protein into a 3-D, active
molecular conformation [43]. Despite the recent progresses
in protein structure characterization and prediction, protein
folding is still a largely unsolved problem in biophysics and
related computational sciences [57]. This fact is due to a
multitude of causes, such as the large number of residues
involved in the process (protein molecules contain from tens
to thousands of residues) and the different energy constraints
defining the (thermodynamic) energy landscape. The process
of folding strictly competes with the aggregation process,
that is, with the tendency of proteins to also establish inter-
molecular bonds. Aggregation propensity is intimately related
to the degree of solubility of a molecule [58]. This results
in the formation of large multimolecular aggregates which,
analogously to what happens with artificial polymers, are
insoluble and hence precipitate in solution [59]. Aggregation
propensity of proteins, in turn, is strongly related to problems
occurring during the folding process, resulting in pathologies

(misfolding diseases), such as Alzheimer and Parkinson [43].
Therefore, studying the solubility degree of proteins is of
utmost importance in protein science.

Niwa et al. [60] analyzed in a strictly controlled setting
the aggregation/solubility propensity of a large set (3173)
of E. coli proteins. Proteins having difficulty in perform-
ing the folding autonomously (i.e., without the help of the
so-called chaperones) tend to aggregate and hence precipi-
tate in the solution (water in the experiment). The 3173 E.
coli proteins denote a bimodal distribution of (normalized)
solubility, with many proteins having a low solubility degree
and only very few soluble proteins [see Fig. 5(a)]. In order
to conceive a classification problem, a suitable threshold for
the solubility must be identified within the solubility range.
We consider the [0, 0.3] and [0.7, 1] intervals for determining
insoluble and soluble proteins. The resulting data set contains
1811 proteins, whose solubility range shown in Fig. 5(b)
clearly denotes the presence of two different classes: proteins
with low and high solubility degrees, respectively. However,
although the intervals have the same length and are positioned
at the extremes of the solubility range, the resulting data
set is very imbalanced, containing 1631 insoluble and only
180 soluble proteins.

We denote the data set containing 1811 proteins as
DS-1811-SEQ. Samples in this data set are represented
as variable-length sequences of amino acid identifiers
(21 different characters that identify the amino acids). The
dissimilarity measure for the input, dI(·, ·), is implemented
by using the well-known Levenshtein sequence alignment
algorithm. Folded proteins find a better representation in terms

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. First two components of DS-454-PCA and DS-454-KPCA. The difficulty of the problem can be appreciated from the high overlap between the two
classes. Average weight values learned by the algorithm on DS-454-FEATURE, considering insoluble and soluble proteins for the nominal class. (a) PCA.
(b) Kernel PCA. (c) Average weights for features with insoluble as nominals. (d) Average weights for features with soluble as nominals.

of networks. Therefore, we also consider the corresponding
graph-based representation of such proteins. Vertices of such
graphs are labeled with 3-D numeric vectors, which convey
a compressed version of the information provided by the
chemicophysical attributes of the related amino acids. Edges
are labeled with the Euclidean distance between the residues.
However, among the 1811 proteins, only 454 currently have
a resolved 3-D structure in the Protein Data Bank.1 As a
consequence, we were able to generate a data set of labeled
graphs containing 454 proteins. This data set is denoted as
DS-454-GRAPH. In this case, dI(·, ·) is implemented by using
a graph edit distance algorithm [61].

By starting from DS-454-GRAPH, we develop four
additional data representations. The first one contains the
sequences of 3-D numeric vectors associated with the graph
vertices. This data representation is obtained by “seriating”
the graphs. Therefore, a sequence contains a number of
elements equal to the number of vertices in the related graph
(see [62] for details on the seriation algorithm). In this
case, dI(·, ·) is implemented by using the dynamic time
warping algorithm, equipped with a weighted Euclidean
distance for computing the distances between the 3-D vectors
composing the sequences. In addition, we also extracted a
collection of numeric features from the graph representations,

1http://www.rcsb.org/pdb/home/home.do

by considering topological characteristics describing both
structural and dynamical features of such graphs. This consists
in mapping each graph in DS-454-GRAPH with a 15-D feature
vector. We denote this data set as DS-454-FEATURE. Finally,
in order to reduce dimensionality of DS-454-FEATURE, we
postprocess such data with principal component analysis and
the related kernel version. In the first case, we retain the
first five components (explaining ≈85% of total variance); in
the second case, instead, we retain only three components.
The two resulting data sets are denoted as DS-454-PCA
and DS-454-KPCA, respectively. First two components of
DS-454-PCA and DS-454-KPCA are shown in
Fig. 6(a) and (b), respectively. In the last three cases,
we always use the weighted Euclidean metric for dI (·, ·).

Table V shows the AUC results obtained by considering
all data representations. We take into account both the cases
for defining the class of nominal data, i.e., either the soluble
and insoluble proteins. Results obtained on DS-1811-SEQ are
not comparable with the others, due to the different numbers
of samples. However, related AUC values show that, in both
cases, the results are comparable with the others. Let us focus
on the remaining five data representations. When the nominal
class is populated with insoluble proteins, significantly better
results (p < 0.0001) are obtained on DS-454-GRAPH. On the
other hand, when considering the soluble proteins as nominal,
better results (p < 0.0001) are obtained on DS-454-SEQV.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIVI AND ALIPPI: ONE-CLASS CLASSIFIERS BASED ON ENTROPIC SPANNING GRAPHS 11

TABLE V

AUC TEST SET RESULTS ON ALL DATA REPRESENTATIONS TAKEN INTO
ACCOUNT FOR THE PROBLEM OF PROTEIN SOLUBILITY RECOGNITION

This suggests that the rich information provided by the graph
representations of proteins is useful for discriminating the
degree of protein solubility.

It is worth stressing that the results with DS-454-FEATURE
are significantly better than those obtained with both
DS-454-PCA and DS-454-KPCA. In fact, AUC is significantly
higher (p < 0.0001 with respect to DS-454-PCA; with
DS-454-KPCA, p < 0.0003 when insoluble proteins are
considered as nominal and p < 0.0001 otherwise). This
fact suggests that the selection of the weights p∗ based
on the proposed mutual information minimization criterion
also results in an effective mechanism of feature selection.
In Fig. 6(c) and (d), we show the average values of the
weights found by the algorithm for the two scenarios for the
nominal class. Significant features with high average weight
are preserved in both cases, yet with some small numerical
differences. The most relevant features are the number of
vertices (“Ver”), number of chains in the molecule (“Chai”),
radius of gyration (“RofG”), modularity of the graph (“Mod”),
average degree (“DC”), and two diffusion characteristics called
heat trace (“HT”), and heat content (“HC”), calculated by
using Laplacian matrix of the graphs.

V. CONCLUSION

In this paper, we presented a design methodology for
one classifiers based on entropic spanning graphs. Input data
are first mapped into a dissimilarity representation, allowing
to deal with several input data representations. Embedding
vectors are constructed by using a (parametric) dissimilarity
measure. An entropic spanning graph is then constructed over
the embedded data and successively processed to derive a
model for the classifier. Entropic spanning graphs are well
known in the literature for providing a nonparametric approach
to estimate information-theoretic quantities, such as entropy
and divergence. Here, we have also proposed to use a kNN
graph (a particular instance of entropic spanning graphs) to
define the model of the one-class classifier. In particular,
decision regions have been derived by partitioning the kNN
graph vertices considering the related connected components
induced during training. We proposed to guide the selection of
the best-performing graph partition by using an optimization
criterion based on mutual information minimization. Notably,
we searched for the best-performing parameters p of the input
dissimilarity measure and k, inducing a partition of order d
with minimum statistical dependence. This was performed
to ensure the maximum independence between the different
clusters of vertices (i.e., the decision regions forming the
model). Mutual information has been computed by exploiting

a convenient formulation defined in terms of the α-Jensen
difference.

In order to associate a confidence level with each classifier
decision, after training, we constructed a fuzzy model on the
resulting graph partition. A membership degree is assigned
to each vertex of the kNN graph, denoting the membership
of the related input sample to the class of nominal data. The
fuzzification of the vertices is based only on the topological
information derived from the kNN graph, hence allowing to
model data sets with complex geometries.

Experimental evaluation of the proposed one classifier is
performed on both benchmarking data sets (containing sam-
ples represented as either feature vectors and labeled graphs)
and by facing an application involving protein molecules.
Benchmarking results on numerical data showed that the
proposed method performs well with respect to several state-
of-the-art one-class classifiers. A drawback of our approach is
the computational complexity, which does not scale well when
the sample size grows [it is of the order of O(n5/2)]. On the
other hand, our approach allows to deal with a wide range of
problems, regardless of the data representation adopted for the
input data.

Here, we tackled the important problem of recognizing
the degree of solubility of the data sets of E. coli pro-
teins. Such data have been analyzed by considering several
different data representations, including sequences, labeled
graphs, and numeric features. The possibility to address a
given problem from different angles is a valuable design
asset characterizing the proposed method. The analysis of
protein solubility revealed the possibility to achieve good
performances by considering different data representations,
especially with those based on labeled graphs. In addition,
in the case of numeric features used to represent proteins, the
proposed method provided a selection of the most relevant
ones that could be exploited for further analyses.

Future research efforts will focus on improving the compu-
tational complexity, by conceiving approximate or alternative
algorithmic solutions for the computation of kNN graph and
vertex centrality. In addition, it could be interesting to conceive
a variant of the method able to dealing with time-variant
environments. In fact, it is reasonable to think that the nominal
conditions might change over time, for instance due to concept
drifts (e.g., aging) affecting the data generating process. The
one-class classifier should be able to adapt the model on-the-
fly with such new nominal conditions, possibly forming new
decision regions and/or integrating the already existing ones
with new data.

REFERENCES

[1] F. Dufrenois, “A one-class kernel Fisher criterion for outlier detection,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5, pp. 982–994,
May 2015.

[2] F. Dufrenois and J. C. Noyer, “One class proximal support vector
machines,” Pattern Recognit., vol. 52, pp. 96–112, Apr. 2016.

[3] L. Livi, A. Giuliani, and A. Sadeghian, “Characterization of graphs
for protein structure modeling and recognition of solubility,” Current
Bioinformatics, vol. 11, no. 1, pp. 106–114, Jan. 2016.

[4] J. Oster, J. Behar, O. Sayadi, S. Nemati, A. E. W. Johnson, and
G. D. Clifford, “Semisupervised ECG Ventricular beat classification
with novelty detection based on switching kalman filters,” IEEE Trans.
Biomed. Eng., vol. 62, no. 9, pp. 2125–2134, Sep. 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[5] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical change-
detection tests,” IEEE Trans. Neural Netw. Learn. Syst., doi:
10.1109/TNNLS.2015.2512714, to be published.

[6] G. Boracchi and M. Roveri, “Exploiting self-similarity for change
detection,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2014,
pp. 3339–3346.

[7] M. Radovanović, A. Nanopoulos, and M. Ivanović, “Reverse nearest
neighbors in unsupervised distance-based outlier detection,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 5, pp. 1369–1382, May 2015.

[8] Z. S. Abdallah, M. M. Gaber, B. Srinivasan, and S. Krishnaswamy, “Any
novel: Detection of novel concepts in evolving data streams,” Evolving
Syst., vol. 7, no. 2, pp. 73–93, 2016.

[9] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A
review of novelty detection,” Signal Process., vol. 99, pp. 215–249,
Jun. 2014.

[10] E. De Santis, L. Livi, A. Sadeghian, and A. Rizzi, “Modeling and
recognition of smart grid faults by a combined approach of dissimi-
larity learning and one-class classification,” Neurocomputing, vol. 170,
pp. 368–383, Dec. 2015.

[11] L. Livi, A. Sadeghian, and W. Pedrycz, “Entropic one-class classifiers,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3187–3200,
Dec. 2015.

[12] L. Livi and C. Alippi, “One-class classification through mutual infor-
mation minimization,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
Vancouver, BC, Canada, Jul. 2016, pp. 1–8.

[13] L. Livi, A. Rizzi, and A. Sadeghian, “Optimized dissimilarity space
embedding for labeled graphs,” Inf. Sci., vol. 266, pp. 47–64, May 2014.

[14] F.-M. Schleif and P. Tino, “Indefinite proximity learning: A review,”
Neural Comput., vol. 27, no. 10, pp. 2039–2096, 2015.

[15] B. Xiao, E. R. Hancock, and R. C. Wilson, “Geometric characterization
and clustering of graphs using heat kernel embeddings,” Image Vis.
Comput., vol. 28, no. 6, pp. 1003–1021, 2010.

[16] R. C. Wilson, E. R. Hancock, E. Pekalska, and R. P. W. Duin, “Spherical
and hyperbolic embeddings of data,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 11, pp. 2255–2269, Nov. 2014.

[17] J. Chen, H.-R. Fang, and Y. Saad, “Fast approximate k-nn graph
construction for high dimensional data via recursive Lanczos bisection,”
J. Mach. Learn. Res., vol. 10, pp. 1989–2012, Dec. 2009.

[18] J. R. Bertini, Jr., L. Zhao, R. Motta, and A. D. A. Lopes, “A nonpara-
metric classification method based on K-associated graphs,” Inf. Sci.,
vol. 181, no. 24, pp. 5435–5456, 2011.

[19] N. Tomas̆ev, M. Radovanović, D. Mladenić, and M. Ivanović, “The role
of hubness in clustering high-dimensional data,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 3, pp. 739–751, Mar. 2014.

[20] N. Tomas̆ev, M. Radovanović, D. Mladenić, and M. Ivanović, “Hubness-
based fuzzy measures for high-dimensional k-nearest neighbor classifi-
cation,” Int. J. Mach. Learn., vol. 5, no. 3, pp. 445–458, 2014.

[21] B. Chen, Y. Zhu, J. Hu, and J. C. Principe, System Parame-
ter Identification: Information Criteria and Algorithms. Amsterdam,
The Netherlands: Elsevier, 2013.

[22] J. Kybic and I. Vnučko, “Approximate all nearest neighbor search
for high dimensional entropy estimation for image registration,” Signal
Process., vol. 92, no. 5, pp. 1302–1316, 2012.

[23] J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural Comput. Appl., vol. 24, no. 1,
pp. 175–186, 2014.

[24] H. Liu, J. Sun, L. Liu, and H. Zhang, “Feature selection with dynamic
mutual information,” Pattern Recognit., vol. 42, no. 7, pp. 1330–1339,
2009.

[25] M. R. Sabuncu and P. Ramadge, “Using spanning graphs for effi-
cient image registration,” IEEE Trans. Image Process., vol. 17, no. 5,
pp. 788–797, May 2008.

[26] A. Bardera, M. Feixas, I. Boada, and M. Sbert, “Image registration by
compression,” Inf.Sciences, vol. 180, no. 7, pp. 1121–1133, 2010.

[27] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 27–66, 2012.

[28] J. H. Plasberg and W. B. Kleijn, “Feature selection under a complexity
constraint,” IEEE Trans. Multimedia, vol. 11, no. 3, pp. 565–571,
Apr. 2009.

[29] K. S. Balagani and V. V. Phoha, “On the feature selection criterion
based on an approximation of multidimensional mutual information,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1342–1343,
Jul. 2010.

[30] V. V. Vikjord and R. Jenssen, “Information theoretic clustering using
a k-nearest neighbors approach,” Pattern Recognit., vol. 47, no. 9,
pp. 3070–3081, 2014.

[31] A. Alush, A. Friedman, and J. Goldberger, “Pairwise clustering
based on the mutual-information criterion,” Neurocomputing, vol. 182,
pp. 284–293, Mar. 2015.

[32] A. Kraskov, H. Stogbauer, R. G. Andrzejak, and P. Grassberger, “Hier-
archical clustering using mutual information,” Eur. Phys. Lett. (EPL),
vol. 70, no. 2, p. 278, 2005.

[33] P. Shen and C. Li, “Distributed information theoretic clustering,” IEEE
Trans. Signal Process., vol. 62, no. 13, pp. 3442–3453, Jul. 2014.

[34] E. Gokcay and J. C. Principe, “Information theoretic clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 158–171, Feb. 2002.

[35] M. Rosvall and C. T. Bergstrom, “An information-theoretic framework
for resolving community structure in complex networks,” Proc. Nat.
Acad. Sci. USA, vol. 104, no. 18, pp. 7327–7331, 2007.

[36] E. Ziv, M. Middendorf, and C. H. Wiggins, “Information-theoretic
approach to network modularity,” Phys. Rev. E, vol. 71, p. 046117,
Apr. 2005.

[37] A. Raj and C. H. Wiggins, “An information-theoretic derivation of min-
cut-based clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 6, pp. 988–995, Jun. 2010.

[38] M. Yu et al., “Hierarchical clustering in minimum spanning trees,”
Chaos, Interdiscipl. J. Nonlinear Sci., vol. 25, no. 2, p. 023107, 2015.

[39] S. Still, “Information bottleneck approach to predictive inference,”
Entropy, vol. 16, no. 2, pp. 968–989, 2014.

[40] N. Slonim, N. Friedman, and N. Tishby, “Multivariate information
bottleneck,” Neural Comput., vol. 18, no. 8, pp. 1739–1789, 2006.

[41] H. Neemuchwala, A. O. Hero, III, and P. Carson, “Image matching using
alpha-entropy measures and entropic graphs,” Signal Process., vol. 85,
no. 2, pp. 277–296, 2005.

[42] A. O. Hero, III, B. Ma, O. J. J. Michel, and J. Gorman, “Applications of
entropic spanning graphs,” IEEE Signal Process. Mag., vol. 19, no. 5,
pp. 85–95, Sep. 2002.

[43] K. A. Dill and J. L. MacCallum, “The protein-folding problem, 50 years
on,” Sci., vol. 338, no. 6110, pp. 1042–1046, 2012.

[44] A. O. Hero and O. J. J. Michel, “Asymptotic theory of greedy approx-
imations to minimal k-point random graphs,” IEEE Trans. Inf. Theory,
vol. 45, no. 6, pp. 1921–1938, Sep. 1999.

[45] N. Leonenko, L. Pronzato, and V. Savani, “A class of Rényi information
estimators for multidimensional densities,” Ann. Statist., vol. 36, no. 5,
pp. 2153–2182, 2008.

[46] B. Bonev, F. Escolano, D. Giorgi, and S. Biasotti, “Information-theoretic
selection of high-dimensional spectral features for structural recogni-
tion,” Comput. Vis. Image Understand., vol. 117, no. 3, pp. 214–228,
2013.

[47] D. Pál, B. Póczos, and C. Szepesvári, “Estimation of Rényi entropy
and mutual information based on generalized nearest-neighbor graphs,”
in Advances in Neural Information Processing Systems, J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.
Red Hook, NY, USA: Curran Associates, Inc., 2010, vol. 23,
pp. 1849–1857.

[48] D. Stowell and M. D. Plumbley, “Fast multidimensional entropy esti-
mation by k-d partitioning,” IEEE Signal Process. Lett., vol. 16, no. 6,
pp. 537–540, Jun. 2009.

[49] J. A. Costa and A. O. Hero, III, “Determining intrinsic dimension
and entropy of high-dimensional shape spaces,” Statist. Anal. Shapes,
H. Krim and A Jr.. Yezzi, Eds. Birkhäuser Boston, MA, USA, 2006.

[50] J. A. Costa and A. O. Hero, “Manifold learning using Euclidean
k-nearest neighbor graphs,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 3. Montreal, QC, Canada, May 2004, pp. 988–991.

[51] K. Sricharan and A. O. Hero, III, “Weighted k-NN graphs for Rényi
entropy estimation in high dimensions,” in Proc. IEEE Statist. Signal
Process. Workshop, Nice, France, Jun. 2011, pp. 773–776.

[52] J. A. Costa and A. O. Hero, III, “Geodesic entropic graphs for dimension
and entropy estimation in manifold learning,” IEEE Trans. Signal
Process., vol. 52, no. 8, pp. 2210–2221, Aug. 2004.

[53] E. Pȩkalska and R. P. W. Duin, The Dissimilarity Representation for
Pattern Recognition: Foundations and Applications. Singapore, World
Scientific, 2005.

[54] M. Borassi, P. Crescenzi, and A. Marino. (Jul. 2015). “Fast and sim-
ple computation of top-k closeness centralities.” [Online]. Available:
https://arxiv.org/abs/1507.01490

[55] Results on One-Class Classification, assessed on 2016. [Online].
Available: http://homepage.tudelft.nl/n9d04/occ/index.html

[56] K. Riesen and H. Bunke, “IAM graph database repository for graph
based pattern recognition and machine learning,” in Structural, Syntactic,
and Statistical Pattern Recognition, N. da Vitoria Lobo et al., Eds.
Orlando, FL, USA: Springer, 2008.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIVI AND ALIPPI: ONE-CLASS CLASSIFIERS BASED ON ENTROPIC SPANNING GRAPHS 13

[57] P. G. Wolynes, “Evolution, energy landscapes and the paradoxes of
protein folding,” Biochimie, vol. 30, pp. 50–56, Dec. 2014.

[58] F. Agostini, M. Vendruscolo, and G. G. Tartaglia, “Sequence-based
prediction of protein solubility,” J. Molecular Biol., vol. 421, nos. 2–3,
pp. 237–241, 2012.

[59] A. Giuliani, R. Benigni, J. P. Zbilut, C. L. Webber, Jr., P. Sirabella, and
A. Colosimo, “Nonlinear signal analysis methods in the elucidation of
protein sequence-structure relationships,” Chem. Rev., vol. 102, no. 5,
pp. 1471–1492, 2002.

[60] T. Niwa et al., “Bimodal protein solubility distribution revealed by an
aggregation analysis of the entire ensemble of Escherichia coli proteins,”
Proc. Nat. Acad. Sci., vol. 106, no. 11, pp. 4201–4206, 2009.

[61] L. Livi and A. Rizzi, “The graph matching problem,” Pattern Anal.
Appl., vol. 16, no. 3, pp. 253–283, 2013.

[62] L. Livi, A. Giuliani, and A. Rizzi, “Toward a multilevel representation of
protein molecules: Comparative approaches to the aggregation/folding
propensity problem,” Inf. Sci., vol. 326, pp. 134–145, Jan. 2016.

Lorenzo Livi (M’14) received the B.Sc. and M.Sc.
degrees from the Department of Computer Science
and the Ph.D. degree from the Department of Infor-
mation Engineering, Electronics, and Telecommuni-
cations, Sapienza University of Rome, Rome, Italy,
in 2007, 2010, and 2014, respectively.

He has been with the ICT industry. From
2014 to 2016, he was a Post-Doctoral Fellow with
Ryerson University, Toronto, ON, Canada. In 2016,
he was a Post-Doctoral Fellow with the Politecnico
di Milano, Milan, Italy, and Università della Svizzera

Italiana, Lugano, Switzerland. He is currently a Lecturer (Assistant Professor)
in data analytics with the Department of Computer Science, University of
Exeter, Exeter, U.K. His current research interests include computational
intelligence methods, time series analysis, and complex dynamical systems,
with focused applications in computational biochemistry and biophysics.

Dr. Livi is a member of the Editorial Board of Applied Soft Computing
(Elsevier) and a Regular Reviewer for several international journals, including
the IEEE TRANSACTIONS ON FUZZY SYSTEMS and Information Sciences
(Elsevier).

Cesare Alippi (F’06) received the M.Sc. degree
in electronic engineering in 1990, and the Ph.D.
degree from the Politecnico di Milano, Milan, Italy,
in 1995.

He has been a Visiting Researcher with University
College London, London, U.K., the Massachusetts
Institute of Technology, Cambridge, MA, USA,
ESPCI ParisTech, Paris, France, CASIA (RC), and
A*STAR (SIN). He is currently a Full Professor of
Information Processing Systems with the Politecnico
di Milano, and of Cyber-Physical and Embedded

Systems with the Università della Svizzera Italiana, Lugano, Switzerland.
He holds five patents, has published a monograph entitled Intelligence
for Embedded Systems (Springer, 2014), and co-authored over 200 papers
in international journals and conference proceedings. His current research
interests include adaptation and learning in nonstationary environments and
intelligence for embedded systems.

Dr. Alippi is a Distinguished Lecturer of the IEEE CIS, a member of the
Board of Governors of INNS, the Vice-President education of the IEEE CIS,
an Associate editor (AE) of the IEEE Computational Intelligence Magazine,
the past AE of the IEEE TRANSACTIONS ON INSTRUMENTATION AND
MEASUREMENTS and the IEEE TRANSACTIONS ON NEURAL NETWORKS,
and a member and the Chair of other IEEE committees. In 2004, he received
the IEEE Instrumentation and Measurement Society Young Engineer Award;
in 2013, he received the IBM Faculty Award. He also received the 2016 IEEE
TNNLS outstanding paper award and the 2016 INNS Gabor award. Among
the others, he was the General Chair of the International Joint Conference
on Neural Networks in 2012, the Program Chair in 2014, and the Co-Chair
in 2011. He was the General Chair of the IEEE Symposium Series on
Computational Intelligence 2014.

